
Directed HyperFlatLMNtal

sano

November 10, 2020

1 Abstract

An attempt to make HyperFlatLMNtal[2] to deal with directed
graphs.

2 Background

LMNtal[1] is a language that can deal with graphs and the pro-
grams can be verified by Model Checker SLIM. However, the
links in FlatLMNtal are only able to connect exactly two ports,
which makes it hard to emulate pointer , n to 1 connection, re-
lated programs.

A list shared by 2 thread:� �
Two threads, thA and thB , are sharing one list, [1, 2, 3].
FlatLMNtal cannot deal with this situation.

thA(X1), thB(X1),

X1 7→ c(1, X2), X2 7→ c(2, X3), X3 7→ c(3, X4), X4 7→ n� �
On the other hands, HyperFlatLMNtal, the extension of

FlatLMNtal, has an excessive power, which can easily emulate
pointers using Hyperlinks but an encoding of dangling pointer
can easily occur.

HyperLMNtal representation of the above program:� �
The following program removes the first node of the list,
which makes thB to have a dangling pointer !X1.

thA(!X1), thB(!X1),

!X1 ▷◁ c(1, !X2), !X2 ▷◁ c(2, !X3), !X3 ▷◁ c(3, !X4), !X4 ▷◁ n,

(thA(!X1), !X1 ▷◁ c(1, !X2) ` )

Same problem arises when we use membranes (cell) instead
of Hyperlinks.� �
Capability typing[3] gives one solution to this problem but

it is too much strict for this purpose.

Walking through a List:� �
The following program is il-typed in the capability typing
system but it does not yields any null/dangling pointers
and should be allowed.

R 7→ walk(Prev), P rev 7→ cons(Elem,Next)

` R 7→ walk(Next), P rev 7→ cons(Elem,Next)� �
This is my attempt to avoid the former problematic situa-

tion yet providing some sense of flexibility as much as possible.

3 Syntax

3.1 Links and Atoms

• X denotes a link name. In the concrete syntax, link
names are denoted by identifiers starting with capital let-
ters.

• p denotes an atom name. In the concrete syntax, atom
names are denoted by identifiers those are distinct from
link names. The only reserved name is alias.

3.2 Processes

The syntax is given in Fig.1.

(process)P ::= 0 (null)

| X 7→ p(X1, . . . , Xm) (m ≥ 0) (atom)

| (P, P ) (molecule)

| νX.P (link creation)

| (P ` P ) (rule)

Fig. 1. Syntax of Directed HyperFlatLMNtal

Given an link X, we define its head as an atom X 7→
p(X1, . . . , Xm). Also, the tail of the link Xi as the ith port
of the atom. Here we shall also call X as the incoming link of
the atom and Xi as the outgoing link of the atom.

An atom X 7→ alias(Y ) is called a aliasing , which can be
abbreviated as X 7→ Y and can be read as aliasing X to Y.

1



The set of the free link names in a process P is denoted as
fn(P ) and is defined inductively as Fig.2.

fn(0) = ∅

fn(X 7→ p(X1, . . . , Xm)) = {X,X1, . . . , Xm}

fn((P,Q)) = fn(P ) ∪ fn(Q)

fn(νX.P ) = fn(P )\{X}

fn((P ` Q)) = ∅

Fig. 2. Free link names of a process

We also define bound link names in a process P , bn(P ), as
the relative complement of fn(P ) with respect to a set of the
all link names appeared in P .

We assume that the set of free link names of the process
which consists the whole program, the top level process, is an
empty set. This can be easily achieved by just adding some
extra link creations to the top level process if needed.

There are several conditions processes must satisfy.

No circular aliasing condition :� �
When applying the latter 2 conditions, aliasing should not
form a cycle. That is, when traversing aliasing, there
should be no same link name appears more than once.� �
Functional (right-unique) condition :� �
For all link X ∈ fn(P ), the head of X must not appear
more than once in P .� �
Serial (left-total) Condition:� �
Given an process νX.P where X ∈ fn(P ), the head of the
X must exist in P .� �

3.3 Rules

Given a rule (P ` Q), P is called the left-hand side and Q is
called the right-hand side of the rule.

There are several conditions a rule (P ` Q) must satisfy.

1. If the head of a link X occurs in P , the head of the link
X must also occur in Q.

2. fn(P ) ⊃ fn(Q).

Notice HyperLMNtal needs a condition: the link creation
must not appear in P , which is not required in this.

4 Operational Semantics

We first define structural congruence (≡) and then define the
reduction relation (−→) on proceses.

4.1 Structural congruence

We define the relation ≡ on processes as the minimal equiva-
lence relation satisfying the rules shown in Fig.3.

Where P [Y/X] is a link substitution that replaces all free
occurrences of X with Y . If a free occurrence of X occurs in a
location where Y would not be free, α-conversion (E1) may be
required.

(E1) P ≡ P [Y/X]

where X ∈ bn(P ) ∧ Y /∈ fn(P )

(E2) (0, P ) ≡ P

(E3) (P,Q) ≡ (Q,P )

(E4) (P, (Q,R)) ≡ ((P,Q), R)

(E5) P ≡ P ′ ⇒ (P,Q) ≡ (P ′, Q)

(E7) νX.(X 7→ Y, P ) ≡ P [Y/X]

(E8) νX.0 ≡ 0

(E9) νX.νY.P ≡ νY.νX.P

(E10) νX.(P,Q) ≡ (νX.P,Q)

where X /∈ fn(Q)

Fig. 3. Structural congruence on processes

4.2 Reduction relation

We define the reduction relation −→ on processes as the mini-
mal relation satisfying the rules in Fig.4.

(R1)
P −→ P ′

(P,Q) −→ (P ′, Q)

(R2)
P −→ P ′

νX.P −→ νX.P ′

(R3)
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4)
(P, (P ` Q)) −→ (Q, (P ` Q))

Fig. 4. Reduction relation on processes

Example 1. Can the rule

(X 7→ p(Y ) ` X 7→ q(Y ))

2



rewrite an atom X 7→ p(X) ?
More precisely, the process

(X 7→ p(X), (X 7→ p(Y ) ` X 7→ q(Y )))

reduces to something?
The rule cannot be α-converted to the form

(X 7→ p(X) ` . . .)

However, the atom X 7→ p(Y ) can be converted to νY.(Y 7→
X,X 7→ p(Y )) by (E7).

Therefore, it can be rewritten as

(X 7→ p(X), (X 7→ p(Y ) ` X 7→ q(Y )))

≡(E7) νY.(Y 7→ X, (X 7→ p(Y ), (X 7→ p(Y ) ` X 7→ q(Y ))))

−→ νY.(Y 7→ X, (X 7→ q(Y ), (X 7→ p(Y ) ` X 7→ q(Y )))))

≡(E7) (X 7→ q(X), (X 7→ p(Y ) ` X 7→ q(Y )))

As the above, we can match non-injective links using con-
gruence rule on aliasing.

5 Needs for the program analysis

5.1 Abridged notation

Before moving on to more examples, we shall introduce some
sugar syntax for convenience.

1. The parentheses of a molecule in a molecule can be omit-
ted.

For example,
((P,Q), R)

can be written as,
(P,Q,R)

．
2. The parentheses of the top level process, and the pro-

cesses of left/right hand sides of the rules can be omitted.

For example,
(P,Q)

can be written as,
P,Q

and
((P,Q) ` R)

can be written as,
P,Q ` R

．
3. The link creation of top level process can be omitted.

For example,

νA.νB.(A 7→ a(A,B), B 7→ b())

can be written as,

A 7→ a(A,B), B 7→ b()

．

4. An atom

νX.X 7→ p(X1, . . . , Xn)

where ∀i(Xi 6= X)

can be written as,

p(X1, . . . , Xn)

．

5. the parentheses of an atom which has no outgoing link
can be omitted.

6.

νXi.(X0 7→ p(X1, . . . , Xi, . . . , Xn), Xi 7→ p(Y1, . . . , Yn))

where, ∀j 6= i(Xj 6= Xi) ∧ ∀j(Yj 6= Xi)

can be written as,

X0 7→ p(X1, . . . , Xi−1, p(Y1, . . . , Yn), Xi+1, . . . , Xn)

．

5.2 An example that collapses

append cons� �
The following rule appends to lists.

R 7→ append(cons(H,T ), L)

` R 7→ cons(H, append(T,L))� �
The above rule works fine but we need the ”terminal” rule

like the following, which yields an annoying problem.

append nil� �
The append of the nil and the list should just return the
latter list.

R 7→ append(nil, L) ` R 7→ L� �
What happens if we apply it to the process

R 7→ append(nil, R)

?
It will be like the following.

νR.(R 7→ append(nil, R), (. . . ` . . .))

≡(E7) νR.νL.(L 7→ R,R 7→ append(nil, L), (. . . ` . . .))

−→ νR.νL.(L 7→ R,R 7→ L, (. . . ` . . .))

≡(E7) νR.(R 7→ R, (. . . ` . . .))

≡(E7) (. . . ` . . .)

3



This is actually... fine. The final result satisfies the condi-
tions but how about this one?

What happens if we apply it to the process

R 7→ append(nil, R), p(R)

?
Then will be like the following.

νR.(R 7→ append(nil, R), p(R), (. . . ` . . .))

≡(E7) νR.νL.(L 7→ R,R 7→ append(nil, L), p(R), (. . . ` . . .))

−→ νR.νL.(L 7→ R,R 7→ L, p(R), (. . . ` . . .))

≡(E7) νR.(R 7→ R, p(R), (. . . ` . . .))

≡(E7) p(R), (. . . ` . . .)

Here the free link name R arises suddenly, which is surely
undesirable.

5.3 The solutions

As shown in former example, the aliasing from a free link to a
free link is somewhat dangerous. How should we avoid this ?

There should be at least 3 solutions.

• Prohibit the aliasing on the right-hand side of the rule.

Then, for example, the above append-nil-rule can be
rewritten with 2 rules

(R 7→ append(nil, cons(H,T )) ` R 7→ cons(H,T )),

(R 7→ append(nil, nil) ` R 7→ nil)

This is the simplest solution though it limits the expres-
siveness power.

• Check the rules (and the processes) can be well-typed
with the capability-typing as following.

Then, for example, the above append-nil-rule will be il-
typed.

R 7→ append(nil, R), p(R), 1○
(R 7→ append(nil, L) ` R 7→ L) 2○

By KCL, this should satisfy

− append/3 + append/2 + p/1 = 0 by 1○
append/3 = alias/1 by 2○
append/2 = alias/2 by 2○

By Conn, alias/1 = alias/2, therefore, p/1 = 0, which is
il-typed.

• The easier solution is to just check whether the aliasing
could match the not-injective links.

For example, the above append-nil-rule will be prevented
as following. Given an rule and the initial state

R 7→ append(nil, R), p(R), 1○
(R 7→ append(nil, L) ` R 7→ L) 2○

, there we find a R 7→ L in right-hand side of the rule
so we must check whether the R and L on the left-hand
side, which is append/3 and append/2 respectively, of the
rule form the loop or not.

However, here, by 1○, append/3 and append/2 is forming
a loop. Therefore, it is not allowed.

6 Translation to the HyperLMNtal

An atom X 7→ p(X1, . . . , Xm) can be rewritten as !X ▷◁
p(X1, . . . , Xm).

Any rule (P ` Q) can be rewritten as (νX1. · · · .νXn.P
′ `

νY1. · · · .νYm.Q′) (n ≥ 0,m ≥ 0) , a structurally congruent
rule, where no link creation appears in P ′ and Q′.

Then, rewrite it as

P’’

:- num(N1), · · · , num(Nn),

new(Y1), · · · , new(Yn)

| Q’’

where the Ni are the numbers of occurrences of the link
Xi in the P ′ and the P’’ and Q’’ is a inductively translated
HyperLMNtal syntax forms of P ′ and Q′.

References

[1] Kazunori Ueda, LMNtal as a hierarchical logic program-
ming language, Theoretical Computer Science, Volume 410,
Issue 46, 2009, Pages 4784-4800, ISSN 0304-3975,

[2] Kazunori Ueda and Seiji Ogawa: HyperLMNtal: An
Extension of a Hierarchical Graph Rewriting Model.
Künstliche Intelligenz, Vol.26, No.1 (2012), pp.27-36.
DOI:10.1007/s13218-011-0162-3.

[3] Ueda Kazunori.“Towards a Substrate Framework of Com-
putation.”In: Concurrent Objects and Beyond. Ed. by Gul
Agha et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 341–366.

[4] Joachim Parrow : An Introduction to the π-Calculus, Chap-
ter to appear in Handbook of Process Algebra, ed. Bergstra,
Ponse and Smolka, Elsevier

4


